oversight

NASA: Significant Challenges Remain for Access, Use, and Sustainment of the International Space Station

Published by the Government Accountability Office on 2012-03-28.

Below is a raw (and likely hideous) rendition of the original report. (PDF)

                            United States Government Accountability Office

GAO                         Testimony
                            Before the Committee on Science, Space,
                            and Technology, House of Representatives


                            NASA
For Release on Delivery
Expected at 9:30 a.m. EDT
Wednesday, March 28, 2012



                            Significant Challenges
                            Remain for Access, Use,
                            and Sustainment of the
                            International Space Station
                            Statement of Cristina T. Chaplain, Director
                            Acquisition and Sourcing Management




GAO-12-587T
                                                 March 28, 2012

                                                 NASA
                                                 Significant Challenges Remain for Access, Use, and
                                                 Sustainment of the International Space Station
Highlights of GAO-12-587T, a testimony
before the Committee on Science, Space, and
Technology, House of Representatives




Why GAO Did This Study                           What GAO Found
Construction of the International Space          NASA plans to use international partner and new domestic commercial launch
Station (ISS) required dedication and            vehicles to access, utilize, and sustain the International Space Station from 2012
effort on the part of many nations to be         through 2020. However, the agency faces challenges in transporting cargo and
successful. Further, the funding                 crew to the ISS as well as ensuring the station is fully utilized. NASA’s decision to
necessary to accomplish this task was            rely on the new commercial vehicles to transport cargo starting in 2012 and to
significant, with the United States              transport crew starting in 2017 is inherently risky because the vehicles are not
alone directly investing nearly $50              yet proven and are experiencing delays in development. Further, NASA does not
billion in its development. As                   have agreements in place for international partners to provide cargo services to
construction of the on-orbit laboratory
                                                 the ISS beyond 2016. The agency will also face a decision regarding the need to
is complete, now is the time for the
                                                 purchase additional seats on the Russian Soyuz vehicle beyond 2016, likely
United States and its partners to make
use of this investment and recently,
                                                 before commercial vehicles have made significant progress in development,
Congress took steps to extend the life           given the three-year lead time necessary for acquiring a seat. This decision is
of the ISS until at least 2020.                  further complicated because restrictions prohibit NASA from making certain
                                                 payments to Russia in connection with the ISS unless the President makes a
GAO has cautioned for years that                 determination. Further, NASA currently expects to transport all cargo needed by
NASA should ensure it has a capability           the ISS in 51 flights through 2020, but if international partner agreements and
to access and utilize the space station          commercial service contracts do not materialize as the agency plans for the
following retirement of the space                years beyond 2016, the situation could lead to a potential cargo shortfall.
shuttle in 2011. We have highlighted
the challenges associated with                   If NASA can access the station, it will next be challenged with fully utilizing the
transporting cargo and crew to and               ISS national laboratory for its intended purpose—scientific research. To take
from the ISS, as well as the difficulties        steps to meet this challenge and consistent with a 2009 GAO recommendation,
NASA faces in ensuring the ISS                   in 2011 NASA selected an organization to centrally oversee ISS national
supports its purpose of scientific               laboratory research decision-making. It is too soon, however, to determine
research and in safely operating the             whether this organization is ensuring full scientific utilization of the ISS.
station. Some risks have been                    Regardless of the efforts of the management body, as GAO noted in a 2009
realized. For example, commercial                report, constraints on crew time for conducting science could also impact full
vehicles are significantly behind                utilization.
schedule—with the first launch to the
space station planned for 2012.                  If NASA can overcome its challenges related to accessing the station, it has
                                                 reasonable approaches in place for estimating spare parts and assessing the
GAO's statement today will focus on
the progress NASA has made and the
                                                 structural health of the space station. These approaches provide NASA with
challenges the agency faces in                   increased assurance that the agency will have sufficient spares and will put
accessing, ensuring full utilization of,         mitigations in place to effectively and safely utilize the space station.
and sustaining the ISS. To prepare this
                                                 International Space Station
statement, GAO relied on prior relevant
work on the ISS and NASA's
commercial cargo and crew efforts and
conducted a limited amount of
additional work to update planned flight
information.




View GAO-12-587T. For more information,
contact Cristina Chaplain at (202) 512-4841 or
chaplainc@gao.gov.



                                                                                          United States Government Accountability Office
Chairman Hall, Ranking Member Johnson, and Members of the
Committee:

Thank you for inviting me here today to discuss utilization of the
International Space Station (ISS). The construction of the ISS is a
significant technical achievement. In essence, the National Aeronautics
and Space Administration (NASA) and its international partners have
assembled and constructed a skyscraper-sized laboratory in low-earth
orbit. This achievement involved dedication and effort on the part of all
participating nations and individuals. With construction completed and a
full crew of six astronauts on-board, the ISS stands poised to deliver
scientific breakthroughs enabled by its unique capabilities. The potential
of the ISS program to deliver on the promise of scientific discovery,
however, is inextricably linked to NASA’s ability to safely access, sustain,
and fully utilize the laboratory in orbit.

Now that ISS construction is finished, NASA and the ISS program face
three major challenges, which will be the focus of my testimony. First and
foremost, NASA must be able to transport cargo and crew to and from the
ISS. Second, NASA must ensure that the management of the ISS
national laboratory results in effective utilization of the station for its
primary purpose—scientific research. Finally, NASA must ensure that
replaceable spares are available and that the ISS is structurally sound
and can safely continue operations.

We have been reporting on the difficulties associated with sustaining the
ISS in the post-space shuttle era since May 2005 when we first
recommended that NASA take actions to determine the best available
options for supporting the station after shuttle retirement. 1 In July 2006,
we expressed our initial concerns regarding NASA’s acquisition strategy
for the shuttle’s replacement, the human spaceflight system known as
Constellation, because of lack of a sound business case based on
resources that are matched to requirements, a stable design, and well-
defined cost estimates. 2 Since 2008, we have cautioned that the use of
international launch vehicles is only a back-up and a less-capable means



1
 GAO, NASA: More Knowledge Needed to Determine Best Alternatives to Provide Space
Station Logistics Support, GAO-05-488 (Washington, D.C.: May 18, 2005).
2
 GAO, NASA: Long-Term Commitment to and Investment in Space Exploration Program
Requires More Knowledge, GAO-06-817R (Washington D.C.: July 17, 2006).




Page 1                                                                GAO-12-587T
of supporting the station, as well as raised concerns about the ambitious
schedules for the vehicles being developed under NASA’s Commercial
Crew and Cargo Program. 3 In a November 2009 report, we iterated our
concerns that limited international partner vehicle capacity and potential
delays in planned commercial vehicle development could impede efforts
to maximize utilization of all ISS research facilities. 4 In 2011 reports and
testimony, we observed that commercial cargo launch development
remained behind schedule and, even when coupled with international
partner launch capacity, may not cover all of the ISS anticipated needs
beginning in 2014. 5 Further, we reported that the funding provided for
NASA’s commercial crew efforts was significantly less than expected, as
other priorities such as the Space Launch System received increased
funding.

In preparing this statement, we relied on our prior reports and
testimonies, including those related to NASA’s management of
commercial launch vehicle development, the agency’s acquisition
approach for commercial crew transportation, and ISS sustainment and
utilization. 6 We also conducted a limited amount of additional audit work
in March 2012 to update information on planned commercial cargo and
international partner flights. Our prior work in these areas, as well as the
work conducted to support this statement, was performed in accordance
with generally accepted government auditing standards. Those standards
require that we plan and perform the audit to obtain sufficient and
appropriate evidence to provide a reasonable basis for our findings and



3
 GAO, NASA: Challenges in Completing and Sustaining the International Space Station,
GAO-08-581T (Washington, D.C.: Apr. 24, 2008) and NASA: Commercial Partners Are
Making Progress, but Face Aggressive Schedules to Demonstrate Critical Space Station
Cargo Transport Capabilities, GAO-09-618 (Washington, D.C.: June 16, 2009).
4
 GAO, International Space Station: Significant Challenges May Limit Onboard Research,
GAO-10-9, (Washington D.C.: Nov. 25, 2009).
5
 GAO, Commercial Launch Vehicles: NASA Taking Measures to Manage Delays and
Risks, GAO-11-692T, (Washington, D.C.: May 26, 2011); International Space Station:
Approaches for Ensuring Utilization through 2020 Are Reasonable but Should Be
Revisited as NASA Gains More Knowledge of On-Orbit Performance, GAO-12-162,
(Washington, D.C.: Dec. 15, 2011); and National Aeronautics and Space Administration:
Acquisition Approach for Commercial Crew Transportation Includes Good Practices, but
Faces Significant Challenges, GAO-12-282, (Washington, D.C.: Dec. 15, 2011).
6
 GAO-05-488; GAO-06-817R; GAO-08-581T; GAO-09-618; GAO-10-9; GAO-11-692T,
GAO-12-162; and GAO-12-282.




Page 2                                                                     GAO-12-587T
             conclusions based on our audit objectives. We believe that the evidence
             obtained provides a reasonable basis for our findings and conclusions
             based on our audit objectives.


             The ISS program began in 1993 with several partner countries: Canada,
Background   the 11 member nations of the European Space Agency, Japan, and
             Russia. From 1994 through 2010, NASA estimates that it directly invested
             over $48 billion in development and construction of the on-orbit scientific
             laboratory, the ISS. NASA intended ISS assembly to be complete much
             sooner than it was. For example, in 1995, NASA expected to ISS
             assembly to be finished by June 2002, whereas the agency actually
             completed assembly in 2010. With ISS expected to be in use only through
             2015, this slower pace shortened the amount of time NASA had available
             to take advantage of the significant monetary investment and to fully
             utilize the station. As a result, the NASA Authorization Act of 2010
             required the NASA Administrator to take all actions necessary to ensure
             the safe and effective operation of the ISS through at least September 30,
             2020. 7

             The ISS is the largest orbiting man-made object. (See fig. 1) It is
             composed of about 1 million pounds of hardware, brought to orbit over
             the course of a decade. The ISS includes (1) primary structures, that is,
             the external trusses which serve as the backbone of the station and the
             pressurized modules that are occupied by the ISS crew, and (2)
             functional systems made up of replaceable units, that is, systems that
             provide basic functionality such as life support and electrical power that
             are made of modular components that are replaceable by astronauts on
             orbit.




             7
              National Aeronautics and Space Administration Authorization Act of 2010, Pub. L. No.
             111-267 § 503.




             Page 3                                                                     GAO-12-587T
Figure 1: International Space Station




The ISS was constructed to support three activities: scientific research,
technology development, and development of industrial applications. The
facilities aboard the ISS allow for ongoing research in microgravity,
studies of other aspects of the space environment, tests of new
technology, and long-term space operations. The facilities also enable a
permanent crew of up to six astronauts to maintain their physical health
standards while conducting many different types of research, including
experiments in biotechnology, combustion science, fluid physics, and
materials science, on behalf of ground-based researchers. Furthermore,
the ISS has the capability to support research on materials and other
technologies to see how they react in the space environment.

NASA planned for the space shuttle to serve as the means of transporting
crew, hardware, and supplies to the ISS through the end of the station’s
life. However, in 2004, President George W. Bush announced his Vision
for Space Exploration (Vision) that included direction for NASA to develop
new spaceflight systems under the Constellation program to replace the
space shuttle as NASA’s primary spaceflight system. The Vision also
included provisions for NASA to pursue commercial alternatives or



Page 4                                                         GAO-12-587T
                            providing transportation and other services to support the ISS after 2010. 8
                            NASA established the Commercial Crew and Cargo Program in 2005 to
                            facilitate the private demonstration of safe, reliable, and cost-effective
                            transportation services and purchase these services commercially. When
                            the Constellation program was cancelled in 2010, the commercial
                            vehicles became NASA’s primary focus for providing cargo and crew
                            transportation to the ISS. The success of commercial efforts became
                            even more important in 2010 when Congress authorized the extension of
                            space station operations until at least 2020 from 2015, and the President
                            directed that NASA transition the role of human transportation to low-
                            earth orbit to commercial space companies.


                            The greatest challenge facing NASA is transporting cargo and crew to
NASA Faces                  and from the ISS to make effective use of the ISS. NASA plans to rely on
Challenges                  ISS international partner and new commercial launch vehicles to transport
                            cargo and crew to and from the ISS until at least 2020. NASA hopes to
Transporting Cargo          begin using new commercial cargo vehicles in 2012 and crew vehicles to
and Crew to and from        transport astronauts to and from the ISS beginning in 2017. NASA’s
                            decision to rely on the new commercial vehicles is inherently risky
the ISS                     because the vehicles are still in development and not yet proven or fully
                            operational.


NASA Plans to Use           NASA is relying on 51 flights of international partner and commercial
International Partner and   vehicles to transport cargo to the ISS from 2012 through 2020, but
Commercial Flights but      agreements for international flights after 2016 are not in place and the
                            commercial vehicles are unproven. NASA has agreements in place with
International Agreements    the European and Japanese space consortiums for their respective
Are Not in Place and        vehicles—the European Automated Transfer Vehicle (ATV), and the
Commercial Vehicles         Japanese H-II Transfer Vehicle (HTV)—to conduct cargo resupply
Remain Unproven             missions beginning in 2012 through 2016. The ATV and HTV are
                            unmanned vehicles that have flown to the ISS, and carry such items as




                            8
                             In 2004, President George W. Bush established a new space exploration policy—A
                            Renewed Spirit of Discovery: The President’s Vision for U.S. Space Exploration (Vision)—
                            which called for the retirement of the space shuttle and development of a new family of
                            exploration systems to facilitate a return of humans to the moon and eventual human
                            spaceflight to Mars.




                            Page 5                                                                      GAO-12-587T
hardware and water. 9 NASA’s current plans anticipate employing a total
of 12 international partner launches—8 from 2012 to 2016 and 4 from
2017 through 2020. NASA does not have agreements in place for
international partners to provide cargo services to the ISS beyond 2016.
NASA plans to use the ATV for a number of cargo flights through 2014,
but no longer anticipates its use after that time. NASA plans to use HTV
for a number of cargo flights through 2016, but its negotiations with the
Japanese partners for flights beyond 2016 are in their infancy.

NASA also plans to use two types of domestic commercial launch
vehicles to maintain ISS from 2012 through 2020. Development of these
vehicles—the Falcon 9 and Antares 10—was fostered under a NASA-
initiated effort known as Commercial Orbital Transportation Services.
These vehicles are being developed by private industry corporations—
Falcon 9 by SpaceX and Antares by Orbital Sciences Corporation. In late
2008, NASA awarded contracts to both companies to provide cargo
transport services to the ISS. Only SpaceX will be able to safely return
significant amounts of cargo to earth, such as the results of scientific
experiments. NASA anticipates that SpaceX will begin providing that
capability in 2012.

Commercial vehicles are essential to sustaining and utilizing the ISS. As
table 1 indicates, SpaceX and Orbital are scheduled to fly 20 (71 percent)
of the 28 launches NASA plans through 2016 and follow-on commercial
resupply vehicles are expected to fly 19 (83 percent) of the 23 launches
from 2017 through 2020. 11




9
   In 2008 and 2009, the ATV and HTV vehicles respectively flew to the ISS and docked at
the station to demonstrate their capabilities. In 2011, both vehicles again launched. These
flights were the second for both systems.
10
     The Antares was previously known as the Taurus II.
11
   NASA has awarded contacts to SpaceX and Orbital for cargo resupply services to the
ISS through 2016. Planned follow-on commercial resupply vehicles are the vehicles NASA
will use for flights beyond those currently under contract.




Page 6                                                                        GAO-12-587T
Table 1: NASA’s Planned Vehicle Launches for 2012 to 2020 to Resupply the ISS as of March 2012

                                        2012        2013         2014        2015   2016   2017     2018      2019      2020         Total
Vehicles
ATV                                          1            1           1                                                                 3
HTV                                          1            1           1         1      1      1         1         1         1           9
SpaceX                                       2            2           2         3      3                                               12
Orbital                                      1            2           1         2      2                                                8
Follow-on commercial resupply                                                                 5         5         5         4          19
Total                                        5            6           5         6      6      6         6         6         5          51
                                        Source: GAO analysis of NASA data.

                                        Note: NASA does not have contracts with commercial providers or negotiated agreements with
                                        international partners for flights from 2017 through 2020.


                                        This plan relies on commercial vehicles meeting anticipated—not
                                        proven—flight rates. As we have previously reported, both SpaceX and
                                        Orbital are working under aggressive schedules and have experienced
                                        delays in completing demonstrations. 12 SpaceX flew its first
                                        demonstration mission in December 2010, some 18 months late, because
                                        of such factors as design issues and software development. Currently,
                                        SpaceX’s next demonstration launch to the ISS has been delayed from
                                        November 2011 to late April 2012 because of additional testing and
                                        resolution of some technical issues such as electromagnetic interference.
                                        Likewise, Orbital experienced programmatic changes and developmental
                                        difficulties that led to multiple delays of several months’ duration. In May
                                        2011 testimony, 13 we noted that Orbital’s inaugural demonstration mission
                                        had been delayed to December 2011. Currently, this flight has been
                                        delayed further to August or September 2012, primarily because of issues
                                        related to construction and testing of the launch pad at Wallops Island,
                                        Virginia. NASA has made efforts to accommodate delays in commercial
                                        vehicle development, including use of the final shuttle flight in July 2011
                                        to pre-position additional ISS spares. However, if the commercial vehicle
                                        launches do not occur as planned in 2012, the ISS could lose some ability
                                        to function and sustain research efforts due to a lack of alternative launch
                                        vehicles to support the ISS and return scientific experiments back to
                                        earth.



                                        12
                                             GAO-09-618.
                                        13
                                             GAO-11-692T.




                                        Page 7                                                                             GAO-12-587T
                            If the international partner agreements and commercial service provider
                            contracts do not materialize as NASA plans for the years beyond 2016,
                            this could lead to a potential cargo shortfall. As we reported in 2011, 14
                            NASA’s strategic planning manifests showed that, when anticipated
                            growth in national laboratory demands and margin for unforeseen
                            maintenance needs are accounted for, the 56 flights NASA was planning
                            for at the time of our review might not cover all of NASA’s anticipated
                            needs. These shortfalls amounted to a total of 2.3 metric tons—
                            approximately the cargo that one SpaceX commercial vehicle will be able
                            to transport to the ISS. As of March 2012, NASA has cut its planned
                            number of flights from 2012 through 2020 from the 56 flights we reported
                            to 51 flights. However, its current ongoing analysis is no longer projecting
                            a cargo shortfall even with the decreased number of flights. According to
                            an ISS program official, cargo estimates, particularly beyond 2013, are for
                            planning purposes and could change as they are updated frequently
                            based on launch vehicle availability and the ISS’s need for spares.


NASA Lacks a Domestic       NASA faces two major challenges in transporting crew to the ISS—
Ability to Transport Crew   adjusting its acquisition strategy for crew vehicles to match available
to the ISS until at Least   funding and deciding if and when to purchase crew seats on the Russian
                            Soyuz in case domestic commercial crew vehicles are not available as
2017                        planned in 2017. In 2010, President Obama directed NASA to transition
                            the role of transporting humans to low-Earth orbit to commercial space
                            companies. Consequently, in 2010 and 2011 NASA entered into funded
                            and unfunded Space Act agreements 15 with several companies to
                            develop and test key technologies and subsystems to further commercial


                            14
                                 GAO-12-262.
                            15
                               Space Act agreements are transactions other than contracts, leases, and cooperative
                            agreements. Congress granted NASA the authority to enter into these types of
                            transactions in the National Aeronautics and Space Act of 1958 to give the agency greater
                            flexibility in achieving its mission. Pub. L. No. 85-568, § 203(b)(5). Under a funded Space
                            Act agreement, appropriated funds are transferred to a domestic partner, such as a
                            private company or a university, to accomplish an agency mission. These agreements
                            differ from Federal Acquisition Regulation (FAR) contracts in that they do not include
                            requirements that generally apply to government contracts entered into under the authority
                            of the FAR. Unfunded agreements accomplish the same goals but no appropriated funds
                            are transferred. Under such agreements, the company can benefit from NASA’s
                            experience, guidance, and advice and NASA can gain insight into the company’s system.
                            For more information see GAO, Key Controls NASA Employs to Guide Use and
                            Management of Funded Space Act Agreements Are Generally Sufficient, but Some Could
                            Be Strengthened and Clarified, GAO-12-230R (Washington, D.C.: Nov. 17, 2011).




                            Page 8                                                                        GAO-12-587T
development of crew transportation services. NASA’s intent was to
encourage private sector innovation and to procure safe, reliable
transportation services to the space station at a reasonable price. Under
this acquisition approach, NASA plans to procure seats for crew
transportation to the ISS from the private sector through at least 2020.

In 2011, we reviewed NASA’s plans for contracting for additional
commercial crew development efforts and found that the agency’s
approach employed several good acquisition practices including
competitive contracting that—if implemented effectively—limit the
government’s risk. As we also noted in that report, NASA’s funding level
for fiscal year 2012 is almost 50 percent less than it anticipated when it
developed its approach for procuring commercial crew services. Given
this funding level, NASA indicated it could not award contracts to multiple
providers, which weakened prospects for competition in subsequent
phases of the program. 16 The main premise of its procurement approach
to control costs—full and open competition for future phases of the
program—therefore was likely no longer viable. Without competition,
NASA could become dependent on one contractor for developing and
providing launch services to the space station. Reliance on a sole source
for any product or service increases the risk that the government will pay
more than expected, since no competitors exist to help control market
prices. As a result of this funding decrease, NASA adjusted its acquisition
strategy. The agency now plans to enter into another round of Space Act
agreements to further the development of commercial crew vehicles and
has delayed the projected purchase of commercial crew transportation
until 2017.

Additionally, the agency faces another looming challenge—a decision
about if and when to purchase crew space on the Russian Soyuz vehicle.
NASA will likely need to decide by the end of 2013 whether to purchase
additional seats that might be needed beyond 2016 because the lead
time for acquiring additional seats on the Soyuz is 3 years. However, in
the 2013 time frame, NASA cannot be fully confident that domestic crew
efforts will succeed because the vehicles will not yet have entered the test
and integration phase of development. Furthermore, the decision to


16
  We reported in GAO-12-282 that, although private investment was anticipated from the
commercial companies, without government investment, the commercial market for launch
vehicles alone may not continue to grow and provide more than one contractor that would
be able to compete for subsequent phases.




Page 9                                                                    GAO-12-587T
                          purchase crew seats on the Russian Soyuz is complicated by restrictions
                          found in the Iran, North Korea, and Syria Nonproliferation Act. 17 These
                          restrictions prohibit NASA from making certain payments to Russia in
                          connection with the ISS unless the President makes a determination.
                          NASA currently has a statutory exemption from this restriction that allows
                          certain types of payments, but that exemption expires in 2016. According
                          to NASA officials, the agency has begun working toward resolution of this
                          problem, but the issue is not yet resolved.


NASA Faces Challenges     NASA’s greatest challenge to utilizing the ISS for its intended purpose—
Maximizing ISS Research   scientific research—is inextricably linked with the agency’s ability to carry
Utilization               scientific experiments and payloads to and from the ISS. International
                          partner vehicles have much less cargo capacity than the space shuttle did
                          to carry supplies to the ISS and no ability to return research payloads
                          back to earth. The Russian Soyuz vehicle has some ability to transport
                          research payloads back to earth, but the capability is minimal at only 132
                          pounds. As mentioned previously, SpaceX, however, will provide NASA
                          with the capability to transport research payloads back to earth.
                          Consequently, if the new commercial launch vehicles are not available as
                          planned, the impact on ISS utilization could be dramatic. In the past,
                          NASA officials have told us that the impact of failures or significant delays
                          in developing the commercial cargo capability would be similar to the
                          post-Columbia shuttle disaster scenario, 18 where NASA operated the ISS
                          in a “survival mode” and moved to a two-person crew, paused assembly
                          activities, and operated the ISS at a lower altitude to relieve propellant
                          burden. NASA officials stated that if the commercial cargo vehicles are
                          delayed, they would pursue a course of “graceful degradation” of the ISS
                          until conditions improve. In such conditions, the ISS would only conduct
                          minimal science experiments.

                          Nonetheless, NASA expects scientific utilization to increase since
                          construction of the ISS is complete. The ISS has been continuously
                          staffed since 2000 and now has a six-member crew. The primary
                          objective for the ISS through 2011 was construction, so research
                          utilization was not the priority. Some research was conducted as time and


                          17
                               Pub. L. No. 106-178 (2000) (as amended), codified at 50 U.S.C. §1701 (note).
                          18
                            This refers to the 2003 loss of the Space Shuttle Columbia, which resulted in NASA
                          suspending shuttle flights until 2005 while investigations were under way.




                          Page 10                                                                       GAO-12-587T
resources permitted while the crew on board performed assembly tasks.
NASA projects that it will utilize approximately 50 percent of the U.S. ISS
research facilities for its own research. As we reported in 2009, however,
NASA’s scientific utilization of the ISS is constrained by limited crew time.
Limiting factors include the size of the crew on board the station; the
necessary division of crew work among many activities that include
maintenance, operations, and research; and the need to share research
facilities with international partners.

Per statutory direction, NASA has opened the remaining facilities to other
federal government entities and private industry and is operating the ISS
as a national laboratory. As we reported in 2009, NASA may face
challenges in the management and operation of ISS National Laboratory
research. 19 There is currently no direct analogue to the ISS National
Laboratory, and though NASA currently manages research programs at
the Jet Propulsion Laboratory and its other centers that it believes
possess similar characteristics to other national laboratories, NASA has
limited experience managing the type of diverse scientific research and
technology demonstration portfolio that the ISS could eventually
represent.

To manage ISS National Laboratory research, as we recommended in
2009, 20 NASA selected a body in 2011 to centrally oversee ISS research
decision-making. This body, the Center for the Advancement of Science
in Space (CASIS), is charged with developing and managing a varied
research and development portfolio based on U.S. national needs for
basic and applied research; establishing a marketplace to facilitate
matching research pathways with qualified funding sources; and
stimulating interest in using the national lab for research and technology
demonstrations and as a platform for science, technology, engineering,
and mathematics education. CASIS has begun outreach efforts and has
issued a Request for Information due back in March 2012 that seeks to
identify and gather information from entities capable of serving as
implementation partners. CASIS plans to develop an internal database
from the information collected via this Request for Information, which will
enable identification of entities that can support payload development
needs according to their requisite areas of expertise. CASIS will refer to


19
     GAO-10-9.
20
     GAO-10-9.




Page 11                                                           GAO-12-587T
                        this database when issuing solicitations for funded opportunities to
                        support research payload activities. Since the establishment of CASIS as
                        the management body of ISS research is relatively recent, we have not
                        examined its effectiveness; therefore, it is too early for us to say whether
                        it will be successful in ensuring full scientific utilization of the station as a
                        national laboratory.


                        We recently reported 21 that NASA has an appropriate and reasonable
NASA Has a              approach in place to determine the spares needed for the ISS as well as
Reasonable Approach     to assess ISS structural health and safety. Estimating ISS spares and
to Meeting the          gauging the structural health and safety of the ISS are not simple
                        challenges. Among the many factors to be assessed are the reliability of
Challenge of            key components, NASA’s ability to deliver spares to the ISS, the
Estimating ISS Spares   projected life of structures that cannot be replaced, and in-depth analysis
                        of those components and systems that affect safety. While some
and Assessing           empirical data exist, because the ISS is a unique facility in space,
Structural Health and   assessing its extended life necessarily requires the use of sophisticated
                        analytical techniques and judgments.
Safety
                        NASA’s approach to determining necessary spare parts for the ISS relies
                        on a statistical process. The statistical process and methodology being
                        used to determine the expected lifetimes of replacement units is a sound
                        and commonly accepted approach within the risk assessment community
                        that considers both manufacturers’ predictions and the systems’ actual
                        performance. NASA also has a reasonable process for establishing
                        performance goals for various functions necessary for utilization and
                        determining through modeling whether available spares are sufficient to
                        meet goals through 2020, but the rationale for establishing performance
                        goals has not been systematically documented.

                        NASA is also using reasonable analytical tools to assess structural health
                        and determine whether ISS hardware can operate safely through 2020.
                        NASA currently anticipates that—with some mitigation—the ISS will
                        remain structurally sound for continued operations through 2020. NASA
                        also is using reasonable methodologies to identify replacement units and
                        other hardware that could cause serious damage to the ISS if they were
                        to fail. Through 2015, NASA plans to develop methods to mitigate issues



                        21
                             GAO-12-162.




                        Page 12                                                               GAO-12-587T
               identified and expects to begin implementing corrective actions as plans
               are put in place.


               In summary, although NASA has done a credible job of ensuring that the
Concluding     ISS can last for years to come, the question that remains is whether
Observations   NASA will be able to service the station and productively use it for
               science. Routine launch support is essential to both, but the road ahead
               depends on successfully overcoming several complex challenges, such
               as technical success, funding, international agreements, and
               management and oversight of the national laboratory. Finally, if any of
               these challenges cannot be overcome, it will be contingent upon NASA to
               ensure that all alternatives are explored—in a timely manner—to make
               full use of the nation’s significant investment in ISS.


               Chairman Hall, Ranking Member Johnson, and Members of the
               Committee, this concludes my prepared statement. I would be pleased to
               respond to any questions that you may have at this time.




               Page 13                                                        GAO-12-587T
Appendix I: GAO Contacts and Staff
                   Appendix I: GAO Contacts and Staff
                   Acknowledgements



Acknowledgements

                   For questions about this statement, please contact me at (202) 512-4841
GAO Contacts       or chaplainc@gao.gov. Contact points for our Offices of Congressional
                   Relations and Public Affairs may be found on the last page of this
                   testimony.


                   Individuals making key contributions to this statement include Shelby S.
Staff              Oakley, Assistant Director; John Warren, Tana Davis, and Alyssa Weir.
Acknowledgements




(121061)
                   Page 14                                                         GAO-12-587T
This is a work of the U.S. government and is not subject to copyright protection in the
United States. The published product may be reproduced and distributed in its entirety
without further permission from GAO. However, because this work may contain
copyrighted images or other material, permission from the copyright holder may be
necessary if you wish to reproduce this material separately.
GAO’s Mission         The Government Accountability Office, the audit, evaluation, and
                      investigative arm of Congress, exists to support Congress in meeting its
                      constitutional responsibilities and to help improve the performance and
                      accountability of the federal government for the American people. GAO
                      examines the use of public funds; evaluates federal programs and
                      policies; and provides analyses, recommendations, and other assistance
                      to help Congress make informed oversight, policy, and funding decisions.
                      GAO’s commitment to good government is reflected in its core values of
                      accountability, integrity, and reliability.

                      The fastest and easiest way to obtain copies of GAO documents at no
Obtaining Copies of   cost is through GAO’s website (www.gao.gov). Each weekday afternoon,
GAO Reports and       GAO posts on its website newly released reports, testimony, and
                      correspondence. To have GAO e-mail you a list of newly posted products,
Testimony             go to www.gao.gov and select “E-mail Updates.”

Order by Phone        The price of each GAO publication reflects GAO’s actual cost of
                      production and distribution and depends on the number of pages in the
                      publication and whether the publication is printed in color or black and
                      white. Pricing and ordering information is posted on GAO’s website,
                      http://www.gao.gov/ordering.htm.
                      Place orders by calling (202) 512-6000, toll free (866) 801-7077, or
                      TDD (202) 512-2537.
                      Orders may be paid for using American Express, Discover Card,
                      MasterCard, Visa, check, or money order. Call for additional information.
                      Connect with GAO on Facebook, Flickr, Twitter, and YouTube.
Connect with GAO      Subscribe to our RSS Feeds or E-mail Updates. Listen to our Podcasts.
                      Visit GAO on the web at www.gao.gov.
                      Contact:
To Report Fraud,
Waste, and Abuse in   Website: www.gao.gov/fraudnet/fraudnet.htm
                      E-mail: fraudnet@gao.gov
Federal Programs      Automated answering system: (800) 424-5454 or (202) 512-7470

                      Katherine Siggerud, Managing Director, siggerudk@gao.gov, (202) 512-
Congressional         4400, U.S. Government Accountability Office, 441 G Street NW, Room
Relations             7125, Washington, DC 20548

                      Chuck Young, Managing Director, youngc1@gao.gov, (202) 512-4800
Public Affairs        U.S. Government Accountability Office, 441 G Street NW, Room 7149
                      Washington, DC 20548




                        Please Print on Recycled Paper.